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Localized states on comb lattices
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Complex networks and graphs provide a general description of a great variety of inhomogeneous discrete
systems. These range from polymers and biomolecules to complex quantum devices, such as arrays of Joseph-
son junctions, microbridges, and quantum wires. We introduce a technique, based on the analysis of the motion
of a random walker, that allows us to determine the density of states of a general local Hamiltonian on a graph,
when the potential differs from zero on a finite number of sites. We study in detail the case of the comb lattice
and we derive an analytic expression for the elements of the resolvent operator of the Hamiltonian, giving its
complete spectrum.
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I. INTRODUCTION translational invariance. It is well known that in this case the

o . eigenvectors of the Hamiltonian are either localized or ex-
Recent developments in microelectronics and nanotechended over the entire lattice.

nologies have led to the construction of complex structures Here, we will consider the spectral problem for the
whose properties are mainly determined by the geometricalamiltonian operator on a general graph. The absence of
arrangement of their elementary components, such as Jtranslational invariance gives rise to a great variety of eigen-
sephson junctions arrays, quantum dots networks, and mestates, which can be localized on particular domains, even of
lecular deviceg1]. This possibility has stimulated the theo- infinite size. A relationship between the localization problem
retical study of general discrete structures, with particulagnd the properties of a random walker moving on the graph
regard to the influence of topology on physical behaviors. is established and used as a method to solve the spectral
From a mathematical point of view, a complex structureProblem on an arbitrary network. The effects of the potential
can be described in terms of an abstract model called Hatrix on the density of states of the Hamiltonian are inves-
graph, made of sites and links. The sites correspond to thigated and, in particular, the relation between the existence

discrete elements of the system and the links represent theﬁ?rlI localized states and the form of the potential is analyzed.
mutual relations he random walk method is then applied to study the effects

The description of the large-scale topology of complexOf the potential on an important case of inhomogeneous net-

networks is based on the definition of a parameter, the speg\—lork’ the co_mb Iatt|ce{6,7_J. Th|s_|s an '”f'f“‘e graph Wh'(.:h
. . . Can be obtained connecting a linear chain, called the finger,
tral dimensiond, introduced for fractals by Alexander and

Orbach{2] and later rigorously defined on a generic graph byto each site of a basic chain, the backbone. The increasing
Hattori, Hattori, and Watanab8]. The spectral dimension interest in the study of this network is due to the existence in

eneralizes the Euclidean dimension of regular lattices angature of polymers and biological molecules, having the
9 . . reg : tructure of a comb lattice. Moreover, it should be possible to
rules the universal properties near the critical points and th

low temperature thermodynamip4]. On the other hand, the Build guantum devices, such as arrays of Josephson junctions

local structure of a graph can induce many relevant effect 8], microbridges or quantum wires arranged according to
grap y he geometry of a comb graph.

Recent works on Bose-Einstein condensation on inhomoge-~y2" .o mp graph is characterized by a peculiar continuous

neous networks have put into evidence an example of a pes'pectrum divided in two sections. One corresponds to gener-

f:#aro?ezgx;g{éfggif th;ogggr?e;gczl '222{80%?35? :Tg\fvélized eigenstates extended on the whole graph. The other
: . - 9 o F T presents states localized on the backbone and exponentially
dimensional,d=1, network, presents condensation at finite

temperaturds;. decreasing on the fingers of the cof®. It is shown that the

existence of these states in the high energy region of the
Many relevant fT‘Od?'S on cgmplex b can pe dezontinuous spectrum can influence the presence of localized
scribed by an Hamiltonian ma'tnx,. composed of a kinetic an tates corresponding to a positive potential. In particular the
a potential term. The. former is directly r'elated to the tOpO|'spectrum of the Hamiltonian is analytically determined in the
ogy of the graph, while the latter takes into account the ex

. ) o . presence of a potential which differs from zero only on a
istence of defects or impurities in the material or the Pressinite subgraph of the comb lattice
ence of an external field. On regular lattices, the study of the We begin(Sec. 1) with a brief in.troduction to the math-

spectral problem for these Hamiltonians is simplified by theematical notation of graph theory: we then discuss the defi-

nition of the Hamiltonian operator for the vibrational dynam-
ics of a graph and its quantum mechanical behavior; a
*Electronic address: baldi@science.unitn.it definition of the random walk problem is also given. Section
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[l is devoted to the investigation of the relation between thecency relation and introducing the time Fourier transform
spectral problem for the Hamiltonian operator and the propy(w) of x(t), one obtains

erties of a suitable random walk. This result is then applied
in Sec. IV to the case of the comb lattice, where we analyti-
cally determine the density of states of the Hamiltonian using
a geometrical-combinatoric technique to compute the ran-
dom walk generating function. Finally, conclusions are pre-The problem of finding the normal modes of oscillation is
sented in Sec. V. then reduced to the spectral problem for the Laplacian
operator.

The quantum mechanical behavior of a particle moving
on the graph is described by a discrete Schrodinger equation.
The wave function of the particle is a vectgrbelonging to
the I?(V) space and the equation is

3

m
szyi :E_ Li;Vi-
j

Il. DEFINITIONS
A. Graphs

A graph G is a countable sé&t of verticesi connected
pairwise by a seE of unoriented linkgi,j)=(j,i). Two sites
are called nearest neighbors if there is a link between them.
The coordination number of sitds the number of links that
start fromi. A path in G is a sequence of consecutive links
{(i,k)(k,h)---(n,m)(m,j)}. The length of the path is the
number of links it contains. A loop is a link between one site

h
—L

~ . ad)
om ikt Uk,k) = |ﬁﬁl,

where the Laplacian represents the kinetic term anis a

and itself. A simple graph is a graph without loops and suc
that for any two sites,j e V there is at most one link be-
tween them. A graph is said to be connected if for any tw
pointsi,j e V there is always a path joining them. In the

rfliagonal matrix for the potential energy. One can also de-

scribe the quantum mechanics on a graph using a tight bind-

Oing model. This model, in the so-called two center approxi-

mation, will again reduce to a Hamiltonian of the folm

following we will consider connected graphs. The graph to-" Y- .
pology is algebraically described by its adjacency matrix, |1€Se examples clearly show the importance of the spec-
which is defined as followsA, ; is the number of links be- tral probl_em for the operata +U, v_vhereU IS & diagonal

‘ real matrixU; ;=u; g ;. In the following we will focus our

tweeni andj. . .
The coordination number of poiftcan be obtained from attention on the study of this problem on a general graph. In
A by this case, it is not possible to apply powerful mathematical

tools typical of Euclidean lattices, such as the Fourier trans-
form and the reciprocal lattice. We will here introduce a

method, based on random walk techniques, that will enable
us to solve the problem on a graph, with a general potential.

z,=2A; +2 Aij-
i

The adjacency matrix is a linear operator defined on the Hil
bert spacé?(V). One of the most relevant operators in phys-
ics is the Laplacian, which, on a graph, is defirjéd] by C. Random walks

The walker is a classical particle moving on a graph G.
Starting from a sité, at every discrete time step the walker
where Z is the matrix of the coordination numberg;;  jumps in one of the nearest neighborsipfvith probability
=z4 ;. This operator is the natural extension to a graph ofp; ;. The simplest situatiogsimple random walkis defined
the usual Laplacian, which acts on the continuous threeby the probabilities
dimensional space. It has some important spectral properties:
its spectrum is real, non-negative and bounded. In particular,
on a finite graph, 0 is a simple eigenvalue_oforresponding
to the constant eigenvector.

L=Z-A,

A
pij:?l-

It is also possible to introduce traps and sources,
B. Vibrational dynamics and quantum particles on a graph

The Laplacian operator is directly related to the vibra- Pij :ﬁj—, d; € R. (1)
tional dynamics and to the quantum mechanical motion of a z+d;

particle on the graph. Let us considémassesn connected
by springs of elastic constakt The displacement of the
masses from their equilibrium position is described Ny
vectorsx; € R® and, in the approximation of harmonic oscil-
lations, the dynamic is given by the set of equations:
L
dt?

If d,>0 the walker can die when it passes through theisite
while if =z <d,<0 it is possible that some other particles
will be born when the walker passes through the site. The
situation withd; <-z is meaningless because in that cpse

is negative. One of the interesting quantities in the study of
the random walk problem is the probabiliy;(t)=(p"); ; that

the walker starting from the sifewill reach the sitg at time

t. Here, it is more useful to determine another quantity, the
where the sum is performed over the nearest neighpofs so-called generating function of random walks, defined as
the sitei. Using the adjacency matrix to describe this adja-the discrete Laplace transform Bft):

=-kX (X = X)),

j~i
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- - weR andz+U-w>0 0Oi
P(\) = 2 NP(Y). . . . .
t=0 are satisfied. The seri&; p(w)! defines the generating func-

These definitions provide us with the basis to study the relat-Ion P(1,w) in its domain of convergence. In many cases we

v e B s o) a2 S gencring Lcion s oo ot
dom walk problem. y y

sion of the series outside its domain of convergence and
outside the region whergcan be considered a probability. It

is known that in some cases two analytic extensions of the
same function can be different. This problem is easily solved
A. The resolvent operator and the generating function by choosing forR(w) the correct analytic extension of the
series, taking into account the fact that the spectrud o

a subset oR. An example of this situation will be presented
in the following sections.

Ill. RANDOM WALKS AND LOCALIZATION

The spectrum oH=L+U on a graph G can be deter-
mined by studying its resolvent,
Rw) =(H-w)™

Here, we will show that it is possible to obtain this operator B. Combinatorial methods
from the properties of a suitable random walk with traps and = Before analyzing the special case of the comb graph it is
sources on the graph G. Remembering the definitigrwe  useful to introduce a result that can be applied to a general

can write the generating function as follows: class of networks.
B % To compute the generating functicﬁ()\), let us consider
P(\) =, (Ap) a random walk with traps and sources, described by the prob-
t=0 ability jump matrix p;; introduced in Eq.(1), on a given
=[1 -\(Z+D)*A]™* graph G.

Let us define the quantitly; ;(t) as the probability for the
={lw+\"HZ+D)-Al-wy'\HZ+D), (2)  walker to start from sité at time 0 and to arrive ifj for the
where D is the diagonal matrixD;;=d;é,;. Choosing the first time at timet. Th.e Laplacgjransforrﬁ(k) of F(t) is
matrix D and the variable\ to satisfy the condition, related to the generating functid®(\) by [11]
D+(1=NZ+xwl - U =0, P00 =F )P0 + 6,5 5
the last term of the previous equation will contain the resolyyhen the sitd does not belong to any closed paF; can
vent operatoR(w). In the particular case of a regular graph, pe decomposed as follows: '

with Z=zl, it is convenient to satisfy the condition by setting

N=z/(z—w) andD=\U. In the general situation we can sat- 1
2/ (z=w) g ruation w Fis() =2 pijHi(t-2)p;; :.—Jraz A jH;(t=2)p;;.
j j

isfy the condition by setting Z;
A=1, Here H;(t) is the probability that the walker, starting from
site j, will return onj at timet without passing from [17]
D=U-wl. anda is the value ofy;. Introducing the generating functions

With these definitions, the probability jump matrix becomesand using the relatiorb) we obtain

a function ofw, (zi+ )P ] =a+ 2 [P0, (6)
- —wh-1 -
p(W) =(Z+U =wI)A, ®) wherePffO()\) indicates the generating function wharO.
and the generating functioR(\,w) a function of\ andw.
The relation(2) betweenP and the resolvent operat&(w) IV. THE COMB LATTICE

can be written as The comb grapldFig. 1) is an infinite graph, which can be

=P —wh-1! obtained connecting to each site of a linear chain, called the
RW) = PLwW)(Z+ U -wi)™. @ backbone, another chain called the finger. The sites of the
From the knowledge of the resolvent operator one can deriveomb can be naturally labelled introducing two integer indi-
the whole spectrum dfl. In particular, the pure points spec- ces(x,y) with x,y € Z, wherex labels the different fingers
trum coincides with the values af whereR(w) is not de-  andy represents the distance from the backbone.
fined. The continuous part of the spectrum corresponds to the Let us consider on this graph the spectral problem for the
points of discontinuity ofR(w). operatorH =L +U with U different from zero only on a finite
It is necessary to point out some observations about thaumberN of sites. We will call “holes” or “walls” the non-
domain of definition of the operators and about the sign ozero elements o).
equality in Eq.(4). The matrixp is a probability jump matrix When the attention is focused on the backbone, one can
if the conditions find, in some particular cases, an analytical mapping between
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while z refers to the fingers. The first term describes the
possibility for the walker to move fronm in the direction
opposite to the backbone. The second term corresponds to
the walker moving towards the backbone but without touch-
ing it. The last term is the probability for the walker to move
towards the backbone, to reach it, to move a tigparound

and then to go back to siteMultiplying the two members of

this equation by\! and summing over we obtain forl~:i,i()\)
the following expression:

E0 = %[wx) FIBYIO] + Zt—ﬁ[lpgy,;_l;m)JZPg?o(x).

FIG. 1. Two-dimensional comb graph. (7)

the comb lattice and a linear chain with a suitable local po-The function®H,(t) is the probability of going back to 0 on a
tential. This happens, for example, in the situation describe@gf-linear chain, starting from 0.

in Ref. [12]. If, on the contrary, one aims to determine the
eigenstates over the whole comb structure, the random walk
technique must be used. This topological method applies tf ) ) 1o (1)
the entire graph without distinctions between backbone anéHnctions Hy(t) and “Hy(t) and Py 7 (t).
fingers.

The method is based on the analysis of the random walk
defined by the jump matrix probability introduced(®). The

idea is to find the generating function for the random walk This method can be applied to the case of a potential
corresponding to the case with=0, that is a random walk made ofN nonzero elements. To do this, we need another
g;ttzt:;:n':ewﬂﬂr;(beﬁxf traps or sources, and then to sub- ingredient, the generating functi&ﬁgf?o)(syo)(x), representing
X, X, . o P
In wha{t followsiy: and P will refer to a comb lattice. A :22 g;(();ﬁgglr:lgo?; g:)emvgzglr(ae;ﬁomrgggebgzt\gﬁf: ;\;Vé)ksgﬁz 2:1 d
quantity With the superscript 1 refgrs o the Iingar Chainbyxinfinite fingers. We can express this function in terms of
while subscript 2 means a comb lattice or part of it.

PY(\) and of'Pg (), as follows[15]:

The functionﬁg?o()\) can be computed in an analogous
ay by decomposing the probabilil%')o(t) in terms of the

B. A finite number of holes and walls

A. The single hole

) ) ) 25(x) _ 15/ 15[ M15y
We will start our analysis from the case of a potential Pirois0 (M) = PoN) Pr,s( Z PO,O()‘))'
made by a single hole or wall situated in sit&y), that is

whenuy yn=ady od, . Let us calli the site(0,y) and 0 the o~ ) ) )
site (0,0). The functlonlp(’)yo()\) is the generating function of the prob-

Result (6) allows for the calculation of the generating abili.ty for the walker to gc.J.back to site .0 on a Iine.ar infipite
chain where the probability of escaping from site 0jis

function I~3i,i()\) for a simple random walk on the comb . 1
graph. instead of5. ~
Let us Callll?’i()?)()\) the generating function of the random Exploiting the result6), we calculateP; (1), wherei in-

walks on a finite and opethe first and last site of the chain dicates _the site of a wall or of a hole, that We can assume
are not connected to each oth&near chain made of sites located in(0,y), for a random walk problem withi-1 traps
and where the probability for the walker to jump from one ©" Soulfsspi,i()‘) can be decomposed as in E¢S) and(7)
site to the next one is always This function can be calcu- wherePg (M) can be expressed in terms of the functids,

lated using standard methof3,14. We begin by calculat-  2H,, 155’2, ZIBE??O)(S’O). This can be done by identifying all the

ing F;;(t). Let us caIIPS?o(t) the probability for the walker to  sites that correspond to a wall or to a hole and all the sites
start from 0 and go back to O at timtewithout passing where a finger, containing a wall or a hole, intercepts the
through sitei. F;;(t) can be decomposed in backbone. We have thus solved the random walk problem for
1 1 1 the case withw=0. We obtain the functio®; ;(\ ,w) by sub-
Fi() = =Hyt-2) + Z—blpggl)(t -2+ 2 {—1pg¥y‘_1; Stituting Z y)x y1) With Z ) y»)~W and using the resui#)

3
% titats (z0)°z, we get an expression for the resolvent oper&iav).
_ L Let us discuss now some problems concerning the domain
X (t) PG () PRyt & wtyrigrar | of definition of these functions. The presence of some com-

plex square roots in the expression Rf(\,w) makes it a
wherez, is the coordination number of a site of the backbonemultivalued function. However the resolveR(w) is, for its
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can happen when the two walls or holes are close enough
and their strength is small.

This result is quite surprising because if there is only one
wall or hole there is always one and only one eigenvalue.

V. DISCUSSION AND CONCLUSIONS

By analyzing the case of the comb lattice, we have shown
how it is possible to analytically determine the spectrum of
the Hamiltonian operator on a complex network. When the
potential assumes non zero values only on a finite subgraph
. of the considered graph the solution is reached exploiting the
random walk method. The topological nature of the method
: : : : allows for its application to a vast class of graphs.

-10 ‘ = o 2 7 s The relationship between the motion of the random

Potential energy walker and the spectral problem for the Hamiltonian can also

be exploited for numerical computations. The random walker
FIG. 2. Eigenvalue as a function of the strength of the potentialIS naturally implemented as a Monte Carlo method, thus al-

which is made of only one wall or hole situated at a distaye8 owing the analysis of complex potentials on every finite

from the backbone. graph. o _
The Monte Carlo method consists in the evaluation of the

a%enerating functiorP; ;(1,w) of a random walker simulated
on a computer.

In the case of the comb lattice the number of localized
states is always less than or equal to the number of nonzero
Ylements in the potential matrix. It will be of great interest to
see if this situation also occurs on other graphs and if it is
epossible to devise some regularity in the dependence of the
number of localized states as a function of number, position
and strength of holes and walls.

,”:,i Ow=P,;0)=1 Ow. This f_:malysis is intended to find_ a general con_d_ition for

’ ' localization on complex networks, in the same spirit of the

The knowledge of an analytic expression for some elementanderson’s resul{16] for regular lattices(notice that the
of the resolvent operatd®(w) leads us to a local analysis of mechanisms inducing localization on graphs can be very dif-
the spectrum of the operatbt. After calculating the element ferent from the ones occurring on a regular geomete
R i(w) of the resolvent, the points of divergence of this func-think that this problem can be fruitfully investigated using
tion will coincide with elements of the pure points spectrumthe Monte Carlo method, based on the motion of a random
of H. When the potentidl is made of only one wall or hole walker, to study the localization over a generic graph with a
we obtain thatH has one and only one proper eigenvalue,random potential.
which is always outside the continuous part of the spectrum. On regular lattices the spatial dimension plays a funda-
The continuous part of the spectrum is the same as for thmental role since, when the dimension is less than two, a
situation withU=0 and coincides with the intervD,2(1  short range disorder is sufficient to induce localization. Heu-
+15)]. From our analysis we also get the dependence of thestic results obtained on several inhomogeneous structures
eigenvalue as a function of the distancef the wall or hole  strongly suggest that on graphs the corresponding relevant
from the backbone and of its strengih It is interesting to  parameter is the spectral dimeniion and that short range dis-
note that the curve of the eigenvalue as a functioa t#nds  order gives rise to localization fat< 2. It should be noticed
to be constant, ag increases, for values @fin the interval  that, on regular lattices witd<2, one of the main factors
[0,4] (see, for example, Fig.)2This is rather intriguing, inducing localization is the absence, in the graph topology, of
because the value 4 is also the point of separation betweeslosed self-avoiding pathgoops. One could suppose this
the region of the continuous spectrum of measure 1 and theonsideration applies even to graphs, since no loops are
region of so-called measure z€[i@). present on the comb lattice. However, it can be shown that

Let us consider now the case of a potentlahade of two  the spectral dimension can be less than two even in the pres-
nonzero elements. After having computed the functionence of loops, provided that their number increases slowly
Pii(N,w), wherei corresponds to a nonzero element of theenough with their size, as in the case of the Sierpinski gasket.
potential matrix, we come to the following results: Besides the investigation of a possible extension of the

(i) the proper eigenvalues are at most two. Anderson’s theorem, a future development of the present

(i) for some particular values of the variables involved,work will be the study of the relationship between the ran-
that is the position of the two walls or holes and theirdom walks’ properties and the shape of the eigenvectors of
strength, there can be one or even no eigenvalues at all. Thike Hamiltonian.

Eigenvalue
(=]

nature, a single-valued function, because the spectrum of
operator is univocally defined. In exploiting the reg(if to
determineR(w) from P;;(\,w) it is therefore necessary to
choose the correct branch of the function. This is obtained b
considering thaH is a self-adjoint operator, so th&fw) can
have singularities only on the real axis, and satisfying th
following condition:
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