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Complex networks and graphs provide a general description of a great variety of inhomogeneous discrete
systems. These range from polymers and biomolecules to complex quantum devices, such as arrays of Joseph-
son junctions, microbridges, and quantum wires. We introduce a technique, based on the analysis of the motion
of a random walker, that allows us to determine the density of states of a general local Hamiltonian on a graph,
when the potential differs from zero on a finite number of sites. We study in detail the case of the comb lattice
and we derive an analytic expression for the elements of the resolvent operator of the Hamiltonian, giving its
complete spectrum.
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I. INTRODUCTION

Recent developments in microelectronics and nanotech-
nologies have led to the construction of complex structures
whose properties are mainly determined by the geometrical
arrangement of their elementary components, such as Jo-
sephson junctions arrays, quantum dots networks, and mo-
lecular devices[1]. This possibility has stimulated the theo-
retical study of general discrete structures, with particular
regard to the influence of topology on physical behaviors.

From a mathematical point of view, a complex structure
can be described in terms of an abstract model called a
graph, made of sites and links. The sites correspond to the
discrete elements of the system and the links represent their
mutual relations.

The description of the large-scale topology of complex
networks is based on the definition of a parameter, the spec-
tral dimensiond̄, introduced for fractals by Alexander and
Orbach[2] and later rigorously defined on a generic graph by
Hattori, Hattori, and Watanabe[3]. The spectral dimension
generalizes the Euclidean dimension of regular lattices and
rules the universal properties near the critical points and the
low temperature thermodynamics[4]. On the other hand, the
local structure of a graph can induce many relevant effects.
Recent works on Bose-Einstein condensation on inhomoge-
neous networks have put into evidence an example of a pe-
culiar behavior, due to the geometrical inhomogeneity. A sys-
tem of noninteracting bosons on a comb lattice, a low
dimensional,d̄=1, network, presents condensation at finite
temperature[5].

Many relevant models on complex networks can be de-
scribed by an Hamiltonian matrix, composed of a kinetic and
a potential term. The former is directly related to the topol-
ogy of the graph, while the latter takes into account the ex-
istence of defects or impurities in the material or the pres-
ence of an external field. On regular lattices, the study of the
spectral problem for these Hamiltonians is simplified by the

translational invariance. It is well known that in this case the
eigenvectors of the Hamiltonian are either localized or ex-
tended over the entire lattice.

Here, we will consider the spectral problem for the
Hamiltonian operator on a general graph. The absence of
translational invariance gives rise to a great variety of eigen-
states, which can be localized on particular domains, even of
infinite size. A relationship between the localization problem
and the properties of a random walker moving on the graph
is established and used as a method to solve the spectral
problem on an arbitrary network. The effects of the potential
matrix on the density of states of the Hamiltonian are inves-
tigated and, in particular, the relation between the existence
of localized states and the form of the potential is analyzed.
The random walk method is then applied to study the effects
of the potential on an important case of inhomogeneous net-
work, the comb lattice[6,7]. This is an infinite graph which
can be obtained connecting a linear chain, called the finger,
to each site of a basic chain, the backbone. The increasing
interest in the study of this network is due to the existence in
nature of polymers and biological molecules, having the
structure of a comb lattice. Moreover, it should be possible to
build quantum devices, such as arrays of Josephson junctions
[8], microbridges or quantum wires arranged according to
the geometry of a comb graph.

The comb graph is characterized by a peculiar continuous
spectrum divided in two sections. One corresponds to gener-
alized eigenstates extended on the whole graph. The other
presents states localized on the backbone and exponentially
decreasing on the fingers of the comb[9]. It is shown that the
existence of these states in the high energy region of the
continuous spectrum can influence the presence of localized
states corresponding to a positive potential. In particular the
spectrum of the Hamiltonian is analytically determined in the
presence of a potential which differs from zero only on a
finite subgraph of the comb lattice.

We begin(Sec. II) with a brief introduction to the math-
ematical notation of graph theory; we then discuss the defi-
nition of the Hamiltonian operator for the vibrational dynam-
ics of a graph and its quantum mechanical behavior; a
definition of the random walk problem is also given. Section*Electronic address: baldi@science.unitn.it
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III is devoted to the investigation of the relation between the
spectral problem for the Hamiltonian operator and the prop-
erties of a suitable random walk. This result is then applied
in Sec. IV to the case of the comb lattice, where we analyti-
cally determine the density of states of the Hamiltonian using
a geometrical-combinatoric technique to compute the ran-
dom walk generating function. Finally, conclusions are pre-
sented in Sec. V.

II. DEFINITIONS

A. Graphs

A graph G is a countable setV of vertices i connected
pairwise by a setE of unoriented linkssi , jd=s j , id. Two sites
are called nearest neighbors if there is a link between them.
The coordination number of sitei is the number of links that
start from i. A path in G is a sequence of consecutive links
hsi ,kdsk,hd¯ sn,mdsm, jdj. The length of the path is the
number of links it contains. A loop is a link between one site
and itself. A simple graph is a graph without loops and such
that for any two sitesi , j PV there is at most one link be-
tween them. A graph is said to be connected if for any two
points i , j PV there is always a path joining them. In the
following we will consider connected graphs. The graph to-
pology is algebraically described by its adjacency matrix,
which is defined as follows:Ai,j is the number of links be-
tweeni and j .

The coordination number of pointi can be obtained from
A by

zi = 2Ai,i + o
j

Ai,j .

The adjacency matrix is a linear operator defined on the Hil-
bert spacel2sVd. One of the most relevant operators in phys-
ics is the Laplacian, which, on a graph, is defined[10] by

L = Z − A,

where Z is the matrix of the coordination numbers:Zi,j
=zidi,j. This operator is the natural extension to a graph of
the usual Laplacian, which acts on the continuous three-
dimensional space. It has some important spectral properties:
its spectrum is real, non-negative and bounded. In particular,
on a finite graph, 0 is a simple eigenvalue ofL corresponding
to the constant eigenvector.

B. Vibrational dynamics and quantum particles on a graph

The Laplacian operator is directly related to the vibra-
tional dynamics and to the quantum mechanical motion of a
particle on the graph. Let us considerN massesm connected
by springs of elastic constantk. The displacement of the
masses from their equilibrium position is described byN
vectorsxi PR3 and, in the approximation of harmonic oscil-
lations, the dynamic is given by the set of equations:

m
d2xi

dt2
= − ko

j,i

sxi − x jd,

where the sum is performed over the nearest neighborsj of
the sitei. Using the adjacency matrix to describe this adja-

cency relation and introducing the time Fourier transform
ysvd of xstd, one obtains

m

k
v2yi = o

j

Li,jy j .

The problem of finding the normal modes of oscillation is
then reduced to the spectral problem for the Laplacian
operator.

The quantum mechanical behavior of a particle moving
on the graph is described by a discrete Schrödinger equation.
The wave function of the particle is a vectorf belonging to
the l2sVd space and the equation is

o
k
S "

2m
Lj ,k + Ũk,kDfk = i"

] f j

] t
,

where the Laplacian represents the kinetic term andŨ is a
diagonal matrix for the potential energy. One can also de-
scribe the quantum mechanics on a graph using a tight bind-
ing model. This model, in the so-called two center approxi-
mation, will again reduce to a Hamiltonian of the formL
+U.

These examples clearly show the importance of the spec-
tral problem for the operatorL+U, whereU is a diagonal
real matrix Ui,j =uidi,j. In the following we will focus our
attention on the study of this problem on a general graph. In
this case, it is not possible to apply powerful mathematical
tools typical of Euclidean lattices, such as the Fourier trans-
form and the reciprocal lattice. We will here introduce a
method, based on random walk techniques, that will enable
us to solve the problem on a graph, with a general potential.

C. Random walks

The walker is a classical particle moving on a graph G.
Starting from a sitei, at every discrete time step the walker
jumps in one of the nearest neighbors ofi, with probability
pi,j. The simplest situation(simple random walk) is defined
by the probabilities

pi,j =
Ai,j

zi
.

It is also possible to introduce traps and sources,

pi,j =
Ai,j

zi + di
, di P R. s1d

If di .0 the walker can die when it passes through the sitei,
while if −zi ,di ,0 it is possible that some other particles
will be born when the walker passes through the site. The
situation withdi ,−zi is meaningless because in that casepi,j
is negative. One of the interesting quantities in the study of
the random walk problem is the probabilityPi,jstd=sptdi,j that
the walker starting from the sitei will reach the sitej at time
t. Here, it is more useful to determine another quantity, the
so-called generating function of random walks, defined as
the discrete Laplace transform ofPstd:
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P̃sld = o
t=0

`

ltPstd.

These definitions provide us with the basis to study the rela-
tionship between the spectral problem forL+U and the ran-
dom walk problem.

III. RANDOM WALKS AND LOCALIZATION

A. The resolvent operator and the generating function

The spectrum ofH=L+U on a graph G can be deter-
mined by studying its resolvent,

Rswd = sH − wd−1.

Here, we will show that it is possible to obtain this operator
from the properties of a suitable random walk with traps and
sources on the graph G. Remembering the definition(1) we
can write the generating function as follows:

P̃sld = o
t=0

`

slpdt

= fI − lsZ + Dd−1Ag−1

= hfw + l−1sZ + Dd − Ag − wj−1l−1sZ + Dd, s2d

where D is the diagonal matrix,Di,j =didi,j. Choosing the
matrix D and the variablel to satisfy the condition,

D + s1 − ldZ + lwI − lU = 0,

the last term of the previous equation will contain the resol-
vent operatorRswd. In the particular case of a regular graph,
with Z=zI, it is convenient to satisfy the condition by setting
l=z/ sz−wd andD=lU. In the general situation we can sat-
isfy the condition by setting

l = 1,

D = U − wI.

With these definitions, the probability jump matrix becomes
a function ofw,

pswd = sZ + U − wId−1A, s3d

and the generating functionP̃sl ,wd a function ofl and w.
The relation(2) betweenP̃ and the resolvent operatorRswd
can be written as

Rswd = P̃s1,wdsZ + U − wId−1. s4d

From the knowledge of the resolvent operator one can derive
the whole spectrum ofH. In particular, the pure points spec-
trum coincides with the values ofw whereRswd is not de-
fined. The continuous part of the spectrum corresponds to the
points of discontinuity ofRswd.

It is necessary to point out some observations about the
domain of definition of the operators and about the sign of
equality in Eq.(4). The matrixp is a probability jump matrix
if the conditions

w P R andzi + Ui − w . 0 ∀ i

are satisfied. The seriesot pswdt defines the generating func-
tion P̃s1,wd in its domain of convergence. In many cases we
can obtain the generating function using some geometrical
and combinatory methods that lead us to an analytic exten-
sion of the series outside its domain of convergence and
outside the region wherep can be considered a probability. It
is known that in some cases two analytic extensions of the
same function can be different. This problem is easily solved
by choosing forRswd the correct analytic extension of the
series, taking into account the fact that the spectrum ofH is
a subset ofR. An example of this situation will be presented
in the following sections.

B. Combinatorial methods

Before analyzing the special case of the comb graph it is
useful to introduce a result that can be applied to a general
class of networks.

To compute the generating functionP̃sld, let us consider
a random walk with traps and sources, described by the prob-
ability jump matrix pi,j introduced in Eq.(1), on a given
graph G.

Let us define the quantityFi,jstd as the probability for the
walker to start from sitei at time 0 and to arrive inj for the
first time at timet. The Laplace transformF̃sld of Fstd is

related to the generating functionP̃sld by [11]

P̃i,jsld = F̃i,jsldP̃i,isld + di,j . s5d

When the sitei does not belong to any closed path,Fi,i can
be decomposed as follows:

Fi,istd = o
j

pi,jHjst − 2dpj ,i =
1

zi,i + ao
j

Ai,jHjst − 2dpj ,i .

Here Hjstd is the probability that the walker, starting from
site j , will return on j at time t without passing fromi [17]
anda is the value ofui. Introducing the generating functions
and using the relation(5) we obtain

szi,i + adfP̃i,isldg−1 = a + zi,ifP̃i,i
a=0sldg−1, s6d

whereP̃i,i
a=0sld indicates the generating function whena=0.

IV. THE COMB LATTICE

The comb graph(Fig. 1) is an infinite graph, which can be
obtained connecting to each site of a linear chain, called the
backbone, another chain called the finger. The sites of the
comb can be naturally labelled introducing two integer indi-
ces sx,yd with x,yPZ, wherex labels the different fingers
andy represents the distance from the backbone.

Let us consider on this graph the spectral problem for the
operatorH=L+U with U different from zero only on a finite
numberN of sites. We will call “holes” or “walls” the non-
zero elements ofU.

When the attention is focused on the backbone, one can
find, in some particular cases, an analytical mapping between
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the comb lattice and a linear chain with a suitable local po-
tential. This happens, for example, in the situation described
in Ref. [12]. If, on the contrary, one aims to determine the
eigenstates over the whole comb structure, the random walk
technique must be used. This topological method applies to
the entire graph without distinctions between backbone and
fingers.

The method is based on the analysis of the random walk
defined by the jump matrix probability introduced in(3). The
idea is to find the generating function for the random walk
corresponding to the case withw=0, that is a random walk
with a finite numberN of traps or sources, and then to sub-
stitutezsx,yd with zsx,yd−w.

In what follows F and P will refer to a comb lattice. A
quantity with the superscript 1 refers to the linear chain
while subscript 2 means a comb lattice or part of it.

A. The single hole

We will start our analysis from the case of a potential
made by a single hole or wall situated in sites0,yd, that is
whenusx8,y8d=adx8,0dy8,y. Let us calli the sites0,yd and 0 the
site s0,0d.

Result (6) allows for the calculation of the generating

function P̃i,isld for a simple random walk on the comb
graph.

Let us call1P̃i,j
sxdsld the generating function of the random

walks on a finite and open(the first and last site of the chain
are not connected to each other) linear chain made ofx sites
and where the probability for the walker to jump from one
site to the next one is always12. This function can be calcu-
lated using standard methods[13,14]. We begin by calculat-
ing Fi,istd. Let us callP0,0

sid std the probability for the walker to
start from 0 and go back to 0 at timet without passing
through sitei. Fi,istd can be decomposed in

Fi,istd =
1

zb

1H0st − 2d +
1

zb

1P0,0
sy−1dst − 2d + o

t1,t2,t3

F 1

szfd3zb

1P0,y−2
sy−1d

3st1dP0,0
sid st2d1P0,y−2

sy−1dst3ddt1+t2+t3+4,tG ,

wherezb is the coordination number of a site of the backbone

while zf refers to the fingers. The first term describes the
possibility for the walker to move fromi in the direction
opposite to the backbone. The second term corresponds to
the walker moving towards the backbone but without touch-
ing it. The last term is the probability for the walker to move
towards the backbone, to reach it, to move a timet2 around
and then to go back to sitei. Multiplying the two members of

this equation bylt and summing overt we obtain forF̃i,isld
the following expression:

F̃i,isld =
l2

zb
f1H̃0sld + 1P̃0,0

sy−1dsldg +
l4

zbzf
3f1P̃0,y−2

sy−1dsldg2P̃0,0
sid sld.

s7d

The function1H0std is the probability of going back to 0 on a
half-linear chain, starting from 0.

The function P̃0,0
sid sld can be computed in an analogous

way by decomposing the probabilityF0,0
sid std in terms of the

functions1H0std and2H0std and1P0,0
sy−1dstd.

B. A finite number of holes and walls

This method can be applied to the case of a potential
made ofN nonzero elements. To do this, we need another

ingredient, the generating function2P̃sr,0dss,0d
sxd sld, representing

the probability for the walker to move between two sites of
the backbone of a comb graph made by a finite backbone and
by x infinite fingers. We can express this function in terms of
1P̃r,s

sxdsld and of1P̃0,08 sld, as follows[15]:

2P̃sr,0dss,0d
sxd sld = 1P̃0,08 sld1P̃r,s

sxdS l

zf

1P̃0,08 sldD .

The function1P̃0,08 sld is the generating function of the prob-
ability for the walker to go back to site 0 on a linear infinite
chain where the probability of escaping from site 0 is1

4
instead of1

2.

Exploiting the result(6), we calculateP̃i,isld, wherei in-
dicates the site of a wall or of a hole, that we can assume
located ins0,yd, for a random walk problem withN−1 traps
or sources.P̃i,isld can be decomposed as in Eqs.(5) and(7)
whereP̃0,0

sid sld can be expressed in terms of the functions1H̃0,
2H̃0,

1P̃r,s
sxd, 2P̃sr,0dss,0d

sxd . This can be done by identifying all the

sites that correspond to a wall or to a hole and all the sites
where a finger, containing a wall or a hole, intercepts the
backbone. We have thus solved the random walk problem for
the case withw=0. We obtain the functionP̃i,isl ,wd by sub-
stitutingzsx,ydsx8,y8d with zsx,ydsx8,y8d−w and using the result(4)
we get an expression for the resolvent operatorRswd.

Let us discuss now some problems concerning the domain
of definition of these functions. The presence of some com-
plex square roots in the expression ofP̃i,isl ,wd makes it a
multivalued function. However the resolventRswd is, for its

FIG. 1. Two-dimensional comb graph.
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nature, a single-valued function, because the spectrum of an
operator is univocally defined. In exploiting the result(4) to
determineRswd from P̃i,isl ,wd it is therefore necessary to
choose the correct branch of the function. This is obtained by
considering thatH is a self-adjoint operator, so thatRswd can
have singularities only on the real axis, and satisfying the
following condition:

P̃i,is0,wd = Pi,is0d = 1 ∀ w.

The knowledge of an analytic expression for some elements
of the resolvent operatorRswd leads us to a local analysis of
the spectrum of the operatorH. After calculating the element
Ri,iswd of the resolvent, the points of divergence of this func-
tion will coincide with elements of the pure points spectrum
of H. When the potentialU is made of only one wall or hole
we obtain thatH has one and only one proper eigenvalue,
which is always outside the continuous part of the spectrum.
The continuous part of the spectrum is the same as for the
situation withU=0 and coincides with the intervalf0,2s1
+Î5dg. From our analysis we also get the dependence of the
eigenvalue as a function of the distancey of the wall or hole
from the backbone and of its strengtha. It is interesting to
note that the curve of the eigenvalue as a function ofa tends
to be constant, asy increases, for values ofa in the interval
f0,4g (see, for example, Fig. 2). This is rather intriguing,
because the value 4 is also the point of separation between
the region of the continuous spectrum of measure 1 and the
region of so-called measure zero[9].

Let us consider now the case of a potentialU made of two
nonzero elements. After having computed the function
P̃i,isl ,wd, where i corresponds to a nonzero element of the
potential matrix, we come to the following results:

(i) the proper eigenvalues are at most two.
(ii ) for some particular values of the variables involved,

that is the position of the two walls or holes and their
strength, there can be one or even no eigenvalues at all. This

can happen when the two walls or holes are close enough
and their strength is small.

This result is quite surprising because if there is only one
wall or hole there is always one and only one eigenvalue.

V. DISCUSSION AND CONCLUSIONS

By analyzing the case of the comb lattice, we have shown
how it is possible to analytically determine the spectrum of
the Hamiltonian operator on a complex network. When the
potential assumes non zero values only on a finite subgraph
of the considered graph the solution is reached exploiting the
random walk method. The topological nature of the method
allows for its application to a vast class of graphs.

The relationship between the motion of the random
walker and the spectral problem for the Hamiltonian can also
be exploited for numerical computations. The random walker
is naturally implemented as a Monte Carlo method, thus al-
lowing the analysis of complex potentials on every finite
graph.

The Monte Carlo method consists in the evaluation of the
generating functionP̃i,is1,wd of a random walker simulated
on a computer.

In the case of the comb lattice the number of localized
states is always less than or equal to the number of nonzero
elements in the potential matrix. It will be of great interest to
see if this situation also occurs on other graphs and if it is
possible to devise some regularity in the dependence of the
number of localized states as a function of number, position
and strength of holes and walls.

This analysis is intended to find a general condition for
localization on complex networks, in the same spirit of the
Anderson’s result[16] for regular lattices(notice that the
mechanisms inducing localization on graphs can be very dif-
ferent from the ones occurring on a regular geometry). We
think that this problem can be fruitfully investigated using
the Monte Carlo method, based on the motion of a random
walker, to study the localization over a generic graph with a
random potential.

On regular lattices the spatial dimension plays a funda-
mental role since, when the dimension is less than two, a
short range disorder is sufficient to induce localization. Heu-
ristic results obtained on several inhomogeneous structures
strongly suggest that on graphs the corresponding relevant
parameter is the spectral dimension and that short range dis-

order gives rise to localization ford̄,2. It should be noticed
that, on regular lattices withd,2, one of the main factors
inducing localization is the absence, in the graph topology, of
closed self-avoiding paths(loops). One could suppose this
consideration applies even to graphs, since no loops are
present on the comb lattice. However, it can be shown that
the spectral dimension can be less than two even in the pres-
ence of loops, provided that their number increases slowly
enough with their size, as in the case of the Sierpinski gasket.

Besides the investigation of a possible extension of the
Anderson’s theorem, a future development of the present
work will be the study of the relationship between the ran-
dom walks’ properties and the shape of the eigenvectors of
the Hamiltonian.

FIG. 2. Eigenvalue as a function of the strength of the potential,
which is made of only one wall or hole situated at a distancey=3
from the backbone.
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